What's New in Dementia?

Martin Ingelsson, MD, PhD

Clinician Scientist, Krembil Brain Institute / University Health Network Professor, Dept. of Medicine and Tanz Centre, University of Toronto

Sinai Health/UHN Geriatrics Institute Education Day, June 8, 2023

Disclosures

- I am a paid consultant to BioArctic AB

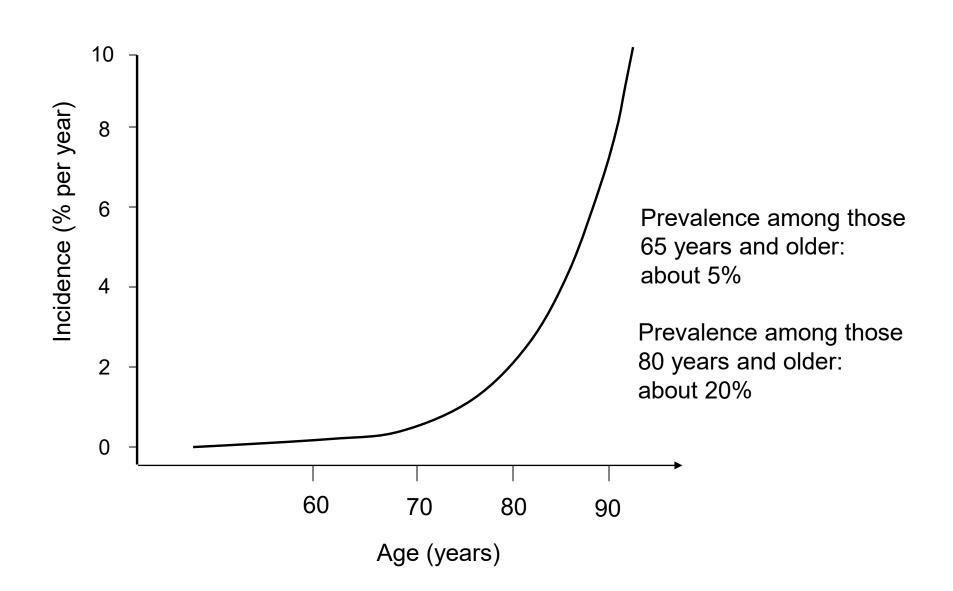

Today's presentation

Background

The novel disease modifying drugs

- Are they effective?
- Are they safe?
- Can we afford them?
- How prepared is the Canadian health care system?

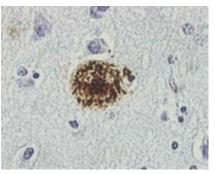
Alzheimer's disease- our most common dementia disorder


597,000 with dementia in Canada in 2020 (61.8% women).

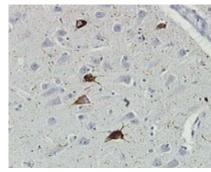
955,900 with dementia in Canada in 2030.

124,000 were diagnosed with dementia in Canada in 2020 alone.

Over \$10.4 billion- The annual cost of dementia to the Canadian economy and healthcare system.


Age is the strongest risk factor for Alzheimer's disease

What does the Alzheimer's disease brain look like?

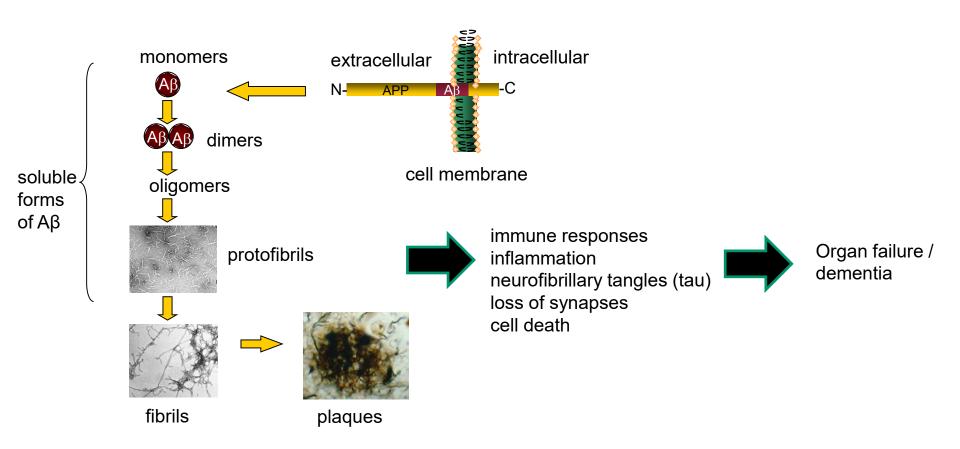


Healthy brain

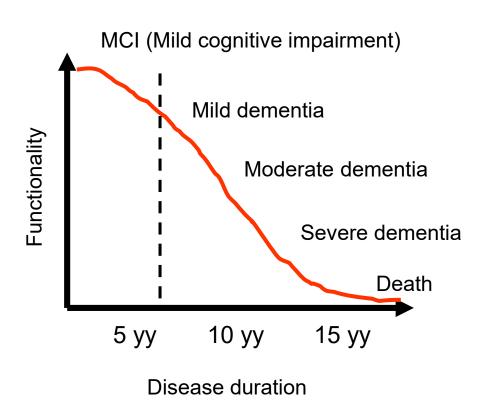
Amyloid plaque

Alzheimer brain

Neurofibrillary tangles


Pathological hallmarks

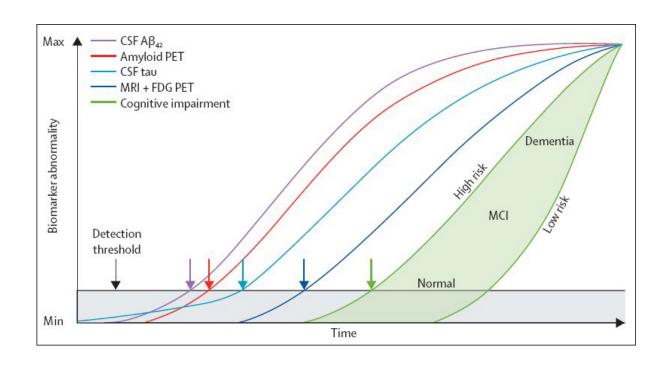
Plaques (amyloid-beta)
Neurofibrillary tangles (tau)
Degeneration of synapses and cells
Inflammation (astrocytosis and gliosis)



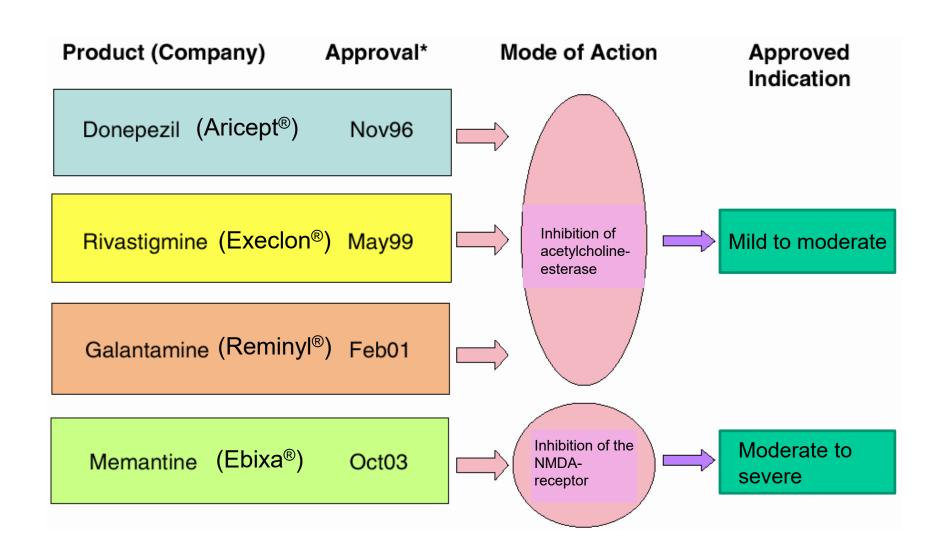
Ingelsson et al., Neurology 2004

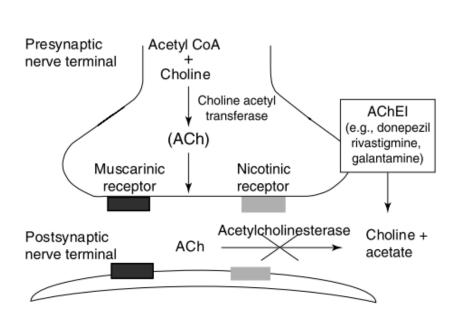
The amyloid cascade of Alzheimer's disease

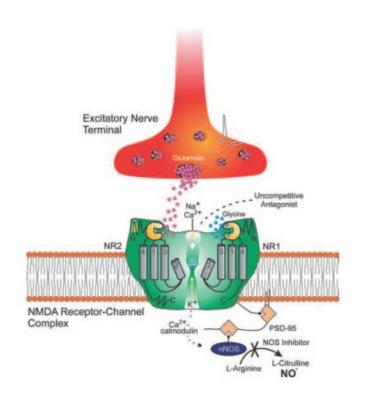
The natural evolution of Alzheimer's disease



Alzheimer's disease biomarkers



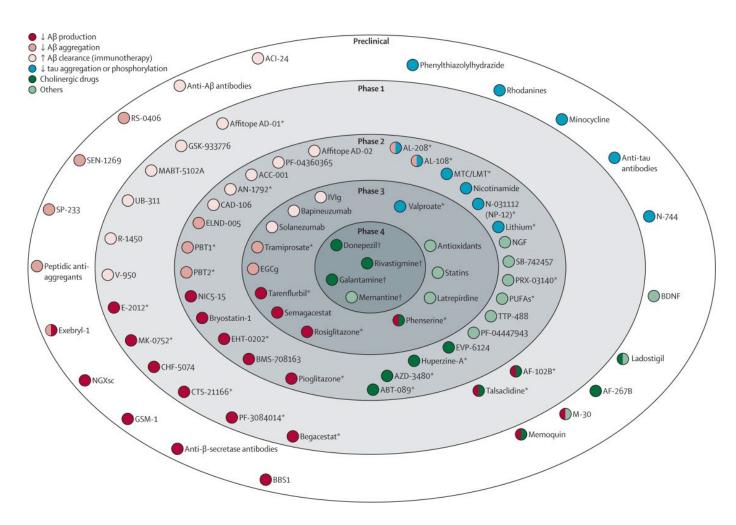

Currently approved drugs for Alzheimer's disease



Current Alzheimer's disease drugs – modes of action

Donepezil (Aricept®), Rivastigmine (Exelon®) and Galantamine (Reminyl®)

Memantine (Ebixa®)



Moghul & Wilkinson, Expert Rev Neurotherapeutics, 2001, 1 (1).

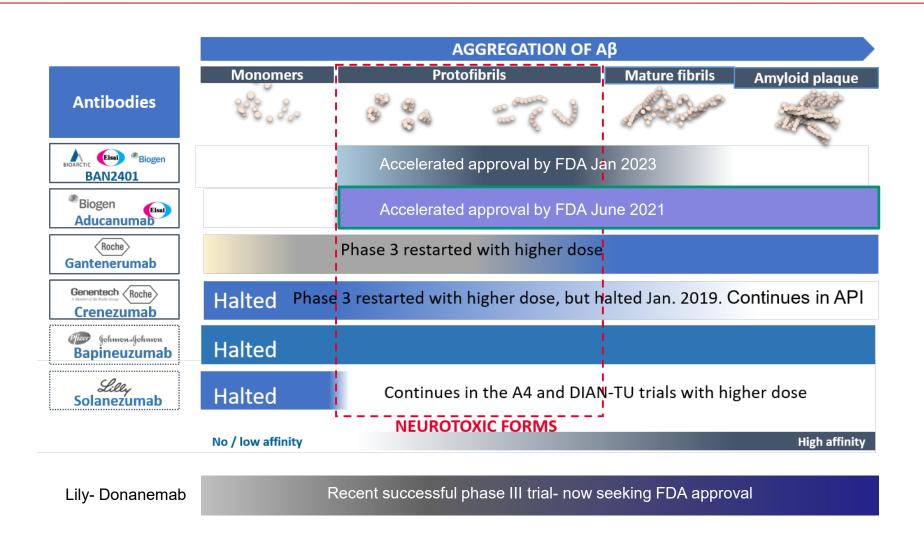
Rogawski & Wenk, CNS Drug Reviews, 2003 Vol. 9, No. 3, pp. 275–308

Large number of novel drug candidates for Alzheimer's disease

Mangialasche et al., Lancet Neurol, 2021, 9 (7), 702-716

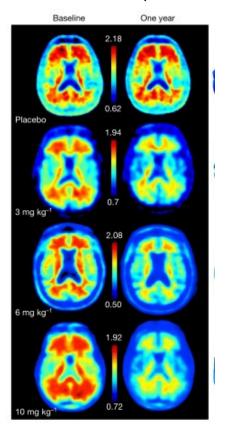
Increasing numbers of human disorders are treated with immunotherapy

Non-CNS disorders	Target
Reumatic disorders (RA, Mb Bechterew, psoriasis arthritis)	anti-TNFa rec
Inflammatory bowel disease	anti-TNFa rec
Macular degeneration	anti-VEGF
Osteoporosis	anti-RANKL
Malignancies (e.g. CLL, colon cancer, breast cancer)	Various (e.g. anti-CD52,, anti- VEGF, anti-ErbB2)
Hyperlipidemia	anti-PCSK9
CNS disorders	
Multiple sclerosis	anti-integrin a4

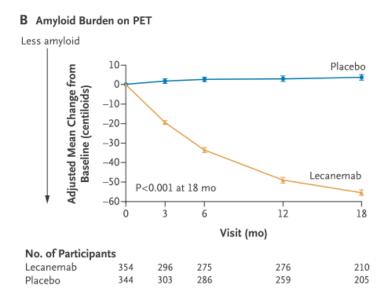

anti-Aβ

anti-α-syn (in phase I/II trials)

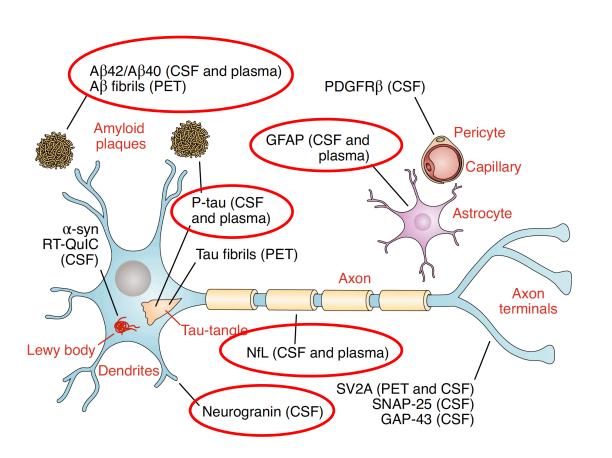
Alzheimer's disease


(Parkinson's disease)

Immunotherapy for Alzheimer's disease: completed and ongoing trials with Aβ antibodies



Amyloid burden on PET


Aducanumab (Aduhelm®)

Lecanemab (Leqembi®)

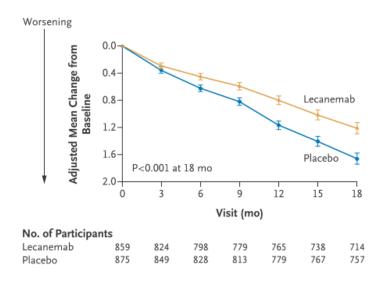
Effect on downstream biomarkers

Effects of Lecanemab (Leqembi®) in the Clarity Phase III trial:

CSF:

Partial correction of Aβ42, t-tau, p-tau and neurogranin.

Plasma:

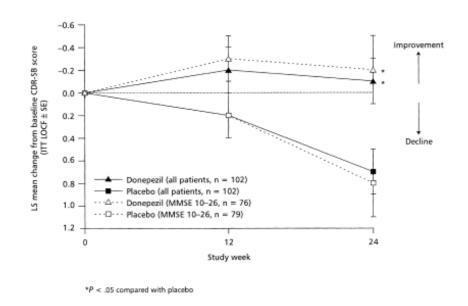

Partial correction of GFAP and NFL

Effects on cognition

The cognitive scale CDR-Sum of Boxes

Endpoint	EMERGE			ENGAGE		
	Placebo decline ± SE (n=548)	Difference vs placebo (%) 95% CI P			Difference vs placebo (%) 95% CI P	
		Low dose (n=543)	High dose (n=547)	Placebo decline ± SE (n=545)	Low dose (n=547)	High dose (n=555)
Primary						
CDR-SB*	1.74±0.11	-0.26 (-15%)	-0.39 (-22%)	1.56±0.11	-0.18 (-12%)	0.03 (2%)
		-0.57, 0.04	-0.69, -0.09		-0.47, 0.11	-0.26, 0.33
		.090	.012		.225	.833

CDR-SB/best effect: -0.39 (high dose compared to placebo)



How clinically meaningful are the effects on cognition?

CDR Sum of Boxes Range	Staging Category		
0	Normal		
0.5-4.0	Questionable cognitive impairment		
0.5-2.5	Questionable impairment		
3.0-4.0	Very mild dementia		
4.5-9.0	Mild dementia		
9.5-15.5	Moderate dementia		
16.0-18.0	Severe dementia		

Abbreviation: See Table 1.

O'Bryant et al., *Arch Neurol.* 2008;65(8):1091-1095

Tariot PN, et al. J Am Geriatr Soc. 2001 Homma A, et al. Dement Geriatr Cogn Disord. 2000

The new drugs- are they safe?

Side effects

Most common side effects

Infusion-related reactions
Perivascular edema (ARIA-E)

Microhemorrhages (ARIA-H)

Localized superficial siderosis (ARIA-H)

Headaches

Falls

Nasopharyngitis

Dizziness

Amyloid-Related Imaging Abnormalities (ARIA)

ARIA-E: Between 18% (non-*APOEε*4) and 43% (*APOEε*4) in high-dose EMERGE (2% placebo). 13% in CLARITY (2% placebo).

Microhaemorrhages: 20% (9% placebo), in the EMERGE high-dose group. 17% in CLARITY (9% placebo)

Serious ARIA: 1.5% high dose EMERGE (0.2% placebo). No clear difference between non- $APOE\varepsilon 4$ and $APOE\varepsilon 4$. 3% symptomatic ARIA in CLARITY.

Budd Haeberlein et al., J Prev Alzheimer's Dis, 2022 Van Dyck et al., New Engl J Med, 2023

The new drugs – can we afford them?

Costs

Aducanumab (Aduhelm): 28 000 USD/year (decreased from 56 000 USD/year)

Lecanemab (Leqembi): 26 500 USD/year

Estimated eligible number of people for treatment with lecanemab in the 27 EU countries.

Age	Amyloid-positive MCI			Mild AD dementia			Total
	Women	Men	Total	Women	Men	Total	
60-64	136,232	126,724	262,956	90,364	51,538	141,902	404,858
	(60,550-282,555)	(56,322-262,837)	(116,872–545,392)	(61,415–126,604)	(34,310-72,191)	(95,725–198,795)	(212,597-744,187)
65-69	176,392	155,504	331,896	125,827	68,617	194,444	526,340
	(102,121-311,009)	(90,029–274,176)	(192,150-585,185)	(85,208-176,013)	(45,052-98,684)	(130,260-274,697)	(322,410-859,882)
70-74	218,419	183,374	401,793	181,241	89,483	270,724	672,517
	(151,211–319,222)	(126,950-268,005)	(278,161–587,227)	(117,172-255,434)	(58,780-127,829)	(175,952–383,263)	(454,113-970,490)
75-79	268,664	207,405	476,069	221,750	99,231	320,981	797,050
	(167,518-414,059)	(129,323-319,646)	(296,841-733,705)	(145,459-314,968)	(64,619-141,181)	(210,078-456,149)	(506,919-1,189,854)
80-84	440,981	297,492	738,473	318,326	120,752	439,078	1,177,551
	(266,252-687,814)	(179,618-464,016)	(445,870-1,151,830)	(204,567-457,219)	(78,749-175,391)	(283,316-632,610)	(729,186-1,784,440)
85+	752,473	371,188	1,123,661	527,724	145,232	672,956	1,796,617
	(516,231–1,026,626)	(254,655-506,430)	(770,886-1,533,056)	(335,530-775,911)	(92,253-212,695)	(427,783-988,606)	(1,198,663 2,321,662)
Total	1,993,161	1,341,687	3,334,848	1,465,232	574,853	2,040,085	5,374,933
	(1,263,883–3,041,285)	(836,897–2,095,110)	(2,100,780-5,136,395)	(949,351–2,106,149)	(373,763-827,971)	(1,323,114–2,934,120)	(3,423,894-8,070,515)

proportion of patients with mild AD dementia out of all patients with AD dementia is estimated to 48% (uncertainty interval 38%–58%), based on data from the Global Burden of Disease Study 2019 [31]. Numbers are adjusted for the assumption that one third of patients with amyloid-positive MCI will be eligible for treatment. Further details on the calculations are provided in the Supplement.

Jönsson et al., Lancet Reg Health Eur, 2023

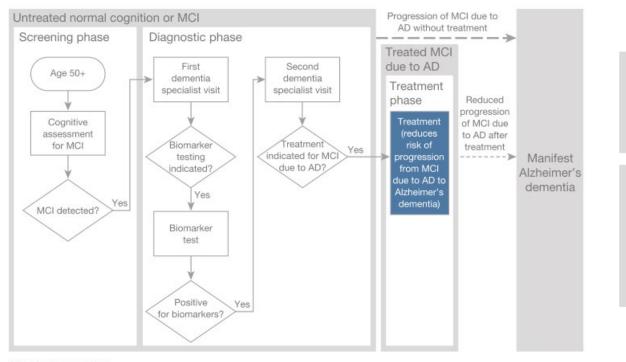
Total cost if all AD patients were to be treated: 133 billion Euros / year (>50% of the current total pharmaceutical expenditures in the EU)

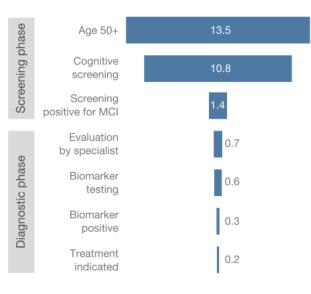
Leqembi now approved by the Veteran Affairs. Not yet approved by the Centers for Medicare and Medicaid Services.

The new drugs – can we afford them?

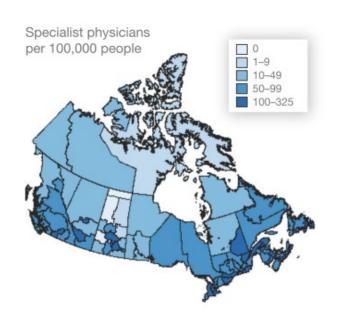
Factors that can reduce the costs

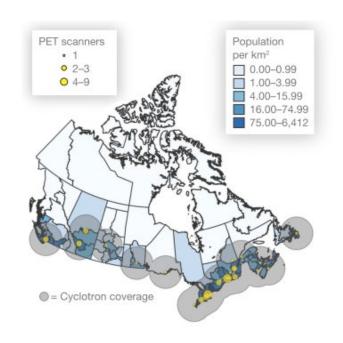
- CSF instead of PET biomarkers for eligibility.
- Use of novel plasma tau-biomarkers for eligibility.
- Development of biomarkers to discriminate between patients with and without CAA- may reduce/eliminate the need for MRI monitoring.
- Future developments of the immunotherapies (s.c. instead of i.v. administration, e.g. donanemab, lecanemab).
- Intermittent treatment (e.g. ALZN002).

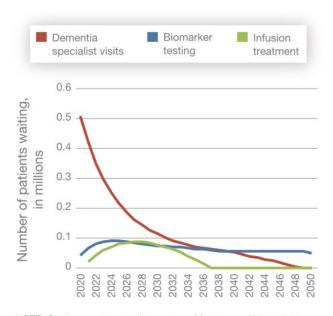

The new drugs - how prepared is the Canadian health care system?


The RAND report

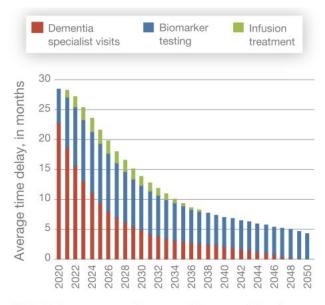
Assessing the
Preparedness of the
Canadian Health Care
System Infrastructure for
an Alzheimer's Treatment


Screening process and yearly estimates




SOURCE: Liu et al., 2017.

Existing bottlenecks



Wait times for assessment and treatment

NOTE: Our base case scenario assumes 80 percent of biomarker testing conducted via PET and 20 percent via CSF.

NOTE: Our base case scenario assumes 80 percent of biomarker testing conducted via PET and 20 percent via CSF.

RAND report / Key findings

- A simulation model to assess preparedness of the Canadian health care system infrastructure to diagnose and treat people with MCI due to AD.
- Average annual wait times for diagnosis and treatment in Canada could peak at 28 months and persist for decades.
- 166,000 to 485,000 Canadians could progress to AD dementia while on wait lists.
- Major constraints:
 - Low capacity of dementia specialists
 - Lack of facilities to perform PET and MRI brain imaging
 - Large sparsely populated geographic areas with limited access to specialty care
- Need for coordinated efforts among multiple stakeholders to increase awareness and investment, and to implement policies that ensure adequate capacity.

National dementia strategy

Box 4. Canada's National Dementia Strategy

Canada became the 30th country to call for the development a national dementia strategy when the Canadian Parliament passed the National Strategy for Alzheimer's Disease and Other Dementias Act (Bill C-233) in June 2017 (Parliament of Canada, 2017). Key measures of the act include

- development of national objectives to improve patient situation and decrease the burden on Canadian society
- greater investment in research, including biomedical, clinical, and health services and systems

- international coordination in the fight against Alzheimer's and increased Canadian contribution
- assisting the provinces in developing and disseminating treatment guidelines and information on the prevention and management of early intervention
- making recommendations on national guidelines for standards of care based on evidence-based best practices.

Conclusions

- We can expect almost one million people with dementia in Canada by 2030. A majority of them will have Alzheimer's disease.
- Current treatments do have effect, but only on the symptomatic level and do not interfere
 with the underlying disease process.
- The novel disease-modifying treatments have proven efficient to reduce central pathological features in brain.
- The novel treatments also show a modest clinical effect.
- The novel treatments can cause ARIA side effects, but only few of these are symptomatic.
- The novel treatments are currently very expensive and will, if used indiscriminately, overwhelm our social security systems.
- The Canadian health care system is currently not prepared to treat all eligible patients.
- An updated national dementia strategy is needed.

Thank you for your attention! Questions?

